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We have also provided representative numerical results to
emphasize the characteristics of the magnetic wave inter-
actions. Although the present theory is rigorously valid
only for a film of infinite length in the propagation
direction, if the end effects are negligible, the coupled-
mode equations can be used to deduce the insertion loss
of a filter of finite length by imposing a phenomenological
boundary condition on the wave amplitude.
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The Effects of Nonlinear Membrane Capacity

on the Interaction

of Microwave and

Radio Frequencies with Biological Materials

GARY C. BERKOWITZ, STUDENT MEMBER, IEEE, AND FRANK S. BARNES, FELLOW, IEEE

Abstract—A model for the capacitance of biological membranes as a
function of voltage is used to predict signal mixing and difference-
frequency generation in membranes.

Production of low-frequency signals by the biomembrane from mod-
ulated RF is predicted, and implications for macroscopic modification of
membrane function are discussed.

I. INTRODUCTION

ECENT realization of the significance of nonther-
mal interactions of radio and microwave frequency
fields with biological materials generates a need for theo-
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retical models to account for effects presently being ob-
served [1]-[18]. Furthermore, the biological membrane is
a likely locus for some of these effects [1], [4]-[6]. [12]-
[14], [16]-[18]. A model, based on the nonlinear conduc-
tance properties of the membrane, has been proposed to
describe possible mixing phenomena and rectification [3].

In this paper, we examine voltage-variable membrane
capacitance as another possible mechanism for generating
difference frequencies. An approach taken is to treat the
biological membrane as a “device” similar, in many re-
spects, to a p-n junction diode as used in parametric
amplifiers and harmonic generators. The characterization
for the high-frequency response of the nonlinear capaci-
tance is derived from low-frequency measurements on
artificial membranes.

0018-9480,/79 /0200-0204300.75 ©1979 IEEE
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II. NONLINEAR CAPACITANCE

The variation of capacitance with voltage allows for
signal mixing (production of harmonic and sum/
difference frequency components) in response to applied
ac signals. Several investigators have observed a nonlinear
capacitance in artificial bilayer-lipid membranes (BLM)
[19]-[24]. In this study, we make the following assump-
tions.

1) Biological membranes also possess a nonlinear
capacitance of the form observed in BLM’s at low
frequencies.

2) The nonlinearities hold at high frequency, ie.,
charge displacements in membranes occur with sufficient
speed so as to make measured low-frequency variations
applicable. To our knowledge, no measurements have
been made of membrane capacity at high frequencies and
at voltage levels which would reveal the nonlinearities.
The frequency characteristics of the membrane capaci-
tance depend on the time required to redistribute charges
in the vicinity of the membrane. Thus measurements of
this characteristic as a function of frequency will help
separate out ionic and electronic components of the mem-
brane capacitance and reveal a good deal about the mem-
brane structure and the charge flow through it. Similar
measurements on p-n junctions are extremely important
in characterizing both the junction and the materials [27]
and [28].

The numerical values for the BLM capacitance are
usually approximated by [19]-[24]

C,=Cy+BV*

C,. the membrane capacity (uF/cm?);

static capacity (pF /cm?):

V'  the magnitude of applied voltage; and

B a constant (with voltage) dependent on membrane,
geometry, and temperature.

It is difficult to assign precise terms of a polynomial
expansion to a nonlinear experimental curve. Thus we
take the voltage dependence to be of a more general form:

C,=CotaV+pVit . (N

If we eliminate third-order and higher terms and define
the charge g with

qg=CV
the membrane current density is given by

dv
= CO‘Z—I; +2aV% +3,8V27. ()

_dcy)
Im= dt

Assume an externally applied signal
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Vv

app= V1 €08 (@) + ¥ cos (wyt +,)

and a transmembrane potential ¥;. The transmembrane
potential is set by the natural concentration imbalance
across the membrane and is usually of the order of 50 mV.
Then

V, =V,+V, cos (w;1)+ V, cos (wyt + ).

@

In the general case, for nonlinearities with inputs at
frequencies f, and f,, the resultant frequencies f, are given
by

fo=Emfixnf,
where m and n are integers.

If we assume that outputs most likely to be of interest
are those close to the natural biological signaling
frequencies (less than 1 kHz), then the difference term is
of greatest significance.

The solution of (2) with V=7V, as in (3) yields a
difference term of the form

Joy= [ @+ 3BV, ]V, Vowg sin (ol —$2) )

where
wo = 601 - (AJ2.

Thus, if 2 modulated ac signal is applied, the membrane
may produce a low-frequency output.

III. ESTIMATE AND IMPLICATIONS OF RESPONSE

MAGNITUDE

We know of no measured values which have been made
on cell membranes or tissue at the frequencies of interest
in the radio and microwave region. However, measure-
ments of capacitance variation have been made on artifi-
cial membranes by White [23] at low frequencies (less
than 300 Hz) and he obtained, at 20°C, values of Cy==0.6
pF/em? and Ba1.2x107° pF/cm*mV)>. If we assume
high peak fields of approximately 2 kV/cm” at 3 GHz,
which might be appropriate in the vicinity of a radar
antenna, |/, |~5x107"° A/cm? at a difference
frequency wy,=10 Hz. This data is obtained using the
plane wave model of [3] and the data from [11]. If the cell
area is approximately equal to 107° cm?, this translates to
an ion current of ~1000 ions/s. This is a small signal
even for the relatively high pulsed fields that are assumed.
Work on cell chemotaxis, however, shows an ability of
cells to detect signals of this magnitude [29]. It is not clear
whether this mechanism will prove important in micro-
wave safety.
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IV. APPENDIX Therefore
SOLUTION FOR MEMBRANE CURRENT DENSITY
J

m

w0=—[a+3BV ]V Vowgsin (wof —¢p),  @o=w; ~w,.
Jm(Vm)=Jm1+sz

av av. av.
= Co—d—t’” +2an—ﬂ}+[3BV,ﬁTt’"]
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Jot(V) == {w, V¥ sin (@, Co+2aV,]
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